Inverse Trigonometric Functions Question 45

Question: For the equation $ {{\cos }^{-1}}x+{{\cos }^{-1}}2x+\pi =0 $ , the number of real solution is

[Orissa JEE 2005]

Options:

A) 1

B) 2

C) 0

D) $ \infty $

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\cos }^{-1}}x+{{\cos }^{-1}}(2x)=-\pi $

Therefore $ {{\cos }^{-1}}2x=-\pi -{{\cos }^{-1}}x $

$ \Rightarrow 2x=\cos (\pi +{{\cos }^{-1}}x) $

Therefore $ 2x=\cos \pi (\cos {{\cos }^{-1}}x)-\sin \pi \sin ({{\cos }^{-1}}x) $

$ 2x=-x\Rightarrow x=0 $ But $ x=0 $ does not satisfy the given equation. No solution will exist.