Inverse Trigonometric Functions Question 46

Question: $ \tan ({{\cos }^{-1}}x) $ is equal to

[IIT 1993]

Options:

A) $ \frac{\sqrt{1-x^{2}}}{x} $

B) $ \frac{x}{1+x^{2}} $

C) $ \frac{\sqrt{1+x^{2}}}{x} $

D) $ \sqrt{1-x^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ {{\cos }^{-1}}x=\theta . $ Then $ x=\cos \theta $

$ \Rightarrow \tan \theta =\sqrt{{{\sec }^{2}}\theta -1} $

$ =\sqrt{\frac{1}{x^{2}}-1}=\sqrt{\frac{1-x^{2}}{x}} $

$ \therefore \tan ({{\cos }^{-1}}x)=\tan \theta =\frac{\sqrt{1-x^{2}}}{x} $ .