Inverse Trigonometric Functions Question 50

Question: Simplified form of $ \tan ( \frac{\pi }{4}+\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} )+\tan ( \frac{\pi }{4}-\frac{1}{2}{{\cos }^{-1}}\frac{a}{b} ) $ is

Options:

A) 0

B) $ \frac{2a}{b} $

C) $ \frac{2b}{a} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: C

Let $ \frac{1}{2}{{\cos }^{-1}}\frac{a}{b}=\theta ; $

then $ {{\cos }^{-1}}\frac{a}{b}=2\theta ;\Rightarrow \cos 2\theta =\frac{a}{b} $ then expression $ =\tan ( \frac{\pi }{4}+\theta )+\tan ( \frac{\pi }{4}-\theta ) $

$ =\frac{1+\tan \theta }{1-\tan \theta }+\frac{1-\tan \theta }{1+\tan \theta } $

$ =\frac{{{(1+tan\theta )}^{2}}+{{(1-tan\theta )}^{2}}}{(1-tan\theta )(1+tan\theta )} $

$ =\frac{2+2{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta }=\frac{2(1+tan^{2}\theta )}{1-{{\tan }^{2}}\theta } $

$ =\frac{2(cos^{2}\theta +sin^{2}\theta )}{(cos^{2}\theta -sin^{2}\theta )} $

$ =\frac{2}{\cos 2\theta }=\frac{2}{\frac{a}{b}}=\frac{2b}{a} $