Inverse Trigonometric Functions Question 52

Question: The limit $ \underset{x\to \infty }{\mathop{\lim }}x[ {{\tan }^{-1}}( \frac{x+1}{x+2} )-{{\tan }^{-1}}( \frac{x}{x+2} ) ] $ is equal to

Options:

A) 2

B) $ \frac{1}{2} $

C) $ -\frac{1}{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

$ \underset{x\to \infty }{\mathop{\lim }}x[ {{\tan }^{-1}}( \frac{x+1}{x+2} )-{{\tan }^{-1}}( \frac{x}{x+2} ) ] $

$ =\underset{x\to \infty }{\mathop{Lim}}x{{\tan }^{-1}}( \frac{\frac{x+1}{x+2}-\frac{x}{x+2}}{1+\frac{x+1}{x+2}.\frac{x}{x+2}} ) $

$ =\underset{x\to \infty }{\mathop{Lim}}x{{\tan }^{-1}}( \frac{x+2}{2x^{2}+5x+4} ) $

$ =\underset{x\to \infty }{\mathop{Lim}}x( \frac{{{\tan }^{-1}}( \frac{x+2}{2x^{2}+5x+4} )}{\frac{x+2}{2x^{2}+5x+4}} )\times \frac{x(x+2)}{2x^{2}+5x+4} $

$ =1\times \frac{1}{2}=\frac{1}{2} $