Inverse Trigonometric Functions Question 53

Question: If $ {{\sin }^{-1}}x={{\tan }^{-1}}y, $ what is the value of $ \frac{1}{x^{2}}-\frac{1}{y^{2}}? $

Options:

A) 1

B) -1

C) 0

D) 2

Show Answer

Answer:

Correct Answer: A

Let, $ {{\sin }^{-1}}x={{\tan }^{-1}}y=\theta $

$ \Rightarrow x=\sin \theta $ and $ y=\tan \theta $

$ \frac{1}{x^{2}}=\frac{1}{{{\sin }^{2}}\theta }=\cos ec^{2}\theta $ And $ \frac{1}{y^{2}}=\frac{1}{{{\tan }^{2}}\theta }={{\cot }^{2}}\theta . $

$ \Rightarrow \frac{1}{x^{2}}-\frac{1}{y^{2}}=\cos ec^{2}\theta -{{\cot }^{2}}\theta =1 $