Inverse Trigonometric Functions Question 54

Question: The sum to the n term of the series $ \cos e{c^{-1}}\sqrt{10}+\cos e{c^{-1}}\sqrt{50}+\cos e{c^{-1}}\sqrt{170}+… $

$ +\cos e{c^{-1}}\sqrt{(n^{2}+1)(n^{2}+2n+2)} $

Options:

A) $ {{\tan }^{-1}}(n+1)-\pi /4 $

B) $ \pi /4 $

C) $ {{\tan }^{-1}}(n+1) $

D) 1

Show Answer

Answer:

Correct Answer: A

Let $ \theta =\cos e{c^{-1}}\sqrt{(n^{2}+1)(n^{2}+2n+2)} $

$ \Rightarrow \cos ec^{2}\theta =(n^{2}+1)(n^{2}+2n+2) $

$ ={{(n^{2}+1)}^{2}}+2n(n^{2}+1)+n^{2}+1 $

$ ={{(n^{2}+n+1)}^{2}}+1\Rightarrow {{\cot }^{2}}\theta ={{(n^{2}+n+1)}^{2}} $

$ \Rightarrow \tan \theta =\frac{1}{n^{2}+n+1}=\frac{(n+1)-n}{1+(n+1)n} $

$ \Rightarrow \theta ={{\tan }^{-1}}[ \frac{(n+1)-n}{1+(n+1)n} ]={{\tan }^{-1}}(n+1)-ta{n^{-1}}n $

Thus, sum n terms of the given series $ =(ta{n^{-1}}2-ta{n^{-1}}1)+(ta{n^{-1}}3-ta{n^{-1}}2) $

$ +(ta{n^{-1}}4-ta{n^{-1}}3)+…+(ta{n^{-1}}(n+1)-ta{n^{-1}}n) $

$ \Rightarrow {{\tan }^{-1}}(n+1)-\pi /4 $