Inverse Trigonometric Functions Question 59

Question: If $ {{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi , $ then

Options:

A) $ x^{2}+y^{2}+z^{2}+xyz=0 $

B) $ x^{2}+y^{2}+z^{2}+2xyz=0 $

C) $ x^{2}+y^{2}+z^{2}+xyz=1 $

D) $ x^{2}+y^{2}+z^{2}+2xyz=1 $

Show Answer

Answer:

Correct Answer: D

Given that $ {{\cos }^{-1}}(x)+co{s^{-1}}(y)+co{s^{-1}}(z)=\pi $

$ \Rightarrow {{\cos }^{-1}}(x)+co{s^{-1}}(y)+co{s^{-1}}(z)={{\cos }^{-1}}(-1) $

$ \Rightarrow {{\cos }^{-1}}(x)+co{s^{-1}}(y)=\pi -co{s^{-1}}(z) $

$ \Rightarrow {{\cos }^{-1}}(xy-\sqrt{1-x^{2}}\sqrt{1-y^{2}})=co{s^{-1}}(-z) $

$ \Rightarrow xy-\sqrt{(1-x^{2})(1-y^{2})}=-z $

$ \Rightarrow (xy+z)=\sqrt{(1-x^{2})(1-y^{2})} $

Squaring both sides, we get $ x^{2}+y^{2}+z^{2}+2xyz=1. $