Inverse Trigonometric Functions Question 63

Question: What is $ sin [cot^{-1}{cos(tan^{-1}}x)] $ where $ x>0 $ , equal to?

Options:

A) $ \sqrt{\frac{(x^{2}+1)}{(x^{2}+2)}} $

B) $ \sqrt{\frac{(x^{2}+2)}{(x^{2}+1)}} $

C) $ \frac{(x^{2}+1)}{(x^{2}+2)} $

D) $ \frac{(x^{2}+2)}{(x^{2}+1)} $

Show Answer

Answer:

Correct Answer: A

Let $ \alpha ={{\tan }^{-1}}x\Rightarrow \tan \alpha =x $ then $ \cos \alpha =\frac{1}{\sqrt{1+{{\tan }^{2}}\alpha }}=\frac{1}{\sqrt{1+x^{2}}} $

$ \Rightarrow \cos (tan^{-1}x)={ \frac{1}{\sqrt{1+x^{2}}} } $

So, $ {{\cot }^{-1}}\cos (ta{n^{-1}}x)=co{t^{-1}}{ \frac{1}{\sqrt{1+x^{2}}} } $ Let $ {{\cot }^{-1}}( \frac{1}{\sqrt{1+x^{2}}} )=\beta $

$ \Rightarrow \cot \beta =\frac{1}{\sqrt{1+x^{2}}} $ and $ \sin \beta =\frac{1}{\sqrt{1+{{\cot }^{2}}\beta }} $

$ =\frac{\sqrt{1+x^{2}}}{\sqrt{x^{2}+1+1}}=\sqrt{\frac{x^{2}+1}{x^{2}+2}} $

$ \Rightarrow \sin [co{t^{-1}}{cos(ta{n^{-1}})}]=\sqrt{\frac{x^{2}+1}{x^{2}+2}} $