Inverse Trigonometric Functions Question 67

Question: If $ {{\sin }^{-1}}\frac{1}{x}={{\sin }^{-1}}\frac{1}{a}+{{\sin }^{-1}}\frac{1}{b}, $ then the value of x is

Options:

A) $ \frac{ab}{\sqrt{a^{2}-1}+\sqrt{b^{2}-1}} $

B) $ \frac{ab}{\sqrt{a^{2}-1}-\sqrt{b^{2}-1}} $

C) $ \frac{2ab}{\sqrt{a^{2}-1}+\sqrt{b^{2}-1}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Let $ {{\sin }^{-1}}\frac{1}{a}=\theta ;{{\sin }^{-1}}\frac{1}{b}=\phi $ then $ {{\sin }^{-1}}\frac{1}{x}=\theta +\phi $

$ \Rightarrow \sin {{\sin }^{-1}}\frac{1}{x}=\sin (\theta +\phi ) $

$ \Rightarrow \frac{1}{x}=\sin \theta cos\phi +cos\theta sin\phi $

$ =\frac{1}{a}\sqrt{1-\frac{1}{b^{2}}}+\sqrt{1-\frac{1}{a^{2}}.}\frac{1}{b}=\frac{\sqrt{b^{2}-1}}{ab}+\frac{\sqrt{a^{2}-1}}{ab} $

$ \Rightarrow x=\frac{ab}{\sqrt{a^{2}-1}+\sqrt{b^{2}-1}} $