Inverse Trigonometric Functions Question 69

Question: If $ \sum\limits_{i=1}^{2n}{{{\cos }^{-1}}x_{i}=0} $ then $ \sum\limits_{i=1}^{2n}{x_{i}} $ is

Options:

A) n

B) 2n

C) $ \frac{n( n+1 )}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Since $ 0\le {{\cos }^{-1}}x_{i}\le \pi $, it follows that $ {{\cos }^{-1}}x_{i}=0 $ for all i.

$ \therefore $ $ x_{i}=1 $ for all $ i\therefore \sum\limits_{i=1}^{2n}{x_{i}=2n} $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index