Inverse Trigonometric Functions Question 70

Question: If $ ax+b(sec(ta{n^{-1}}x))=c $ and $ ay+b $

$ (sec.(ta{n^{-1}}y))=c, $ then $ \frac{x+y}{1-xy}= $

Options:

A) $ \frac{ac}{a^{2}+c^{2}} $

B) $ \frac{2ac}{a-c} $

C) $ \frac{2ac}{a^{2}-c^{2}} $

D) $ \frac{a+c}{1-ac} $

Show Answer

Answer:

Correct Answer: C

Let $ {{\tan }^{-1}}x=\alpha $ and $ {{\tan }^{-1}}y=\beta \Rightarrow \tan \alpha =x,\tan \beta =y $ .

The given system of equations is $ a\tan \alpha +b\sec \alpha =c $ and $ a\tan \beta +b\sec \beta =c $

$ \therefore \alpha and\beta $ are the roots of $ a\tan \theta +b\sec \theta =c $

$ \Rightarrow {{(bsec\theta )}^{2}}={{(c-atan\theta )}^{2}} $

$ \Rightarrow (a^{2}-b^{2})tan^{2}\theta -2ac\tan \theta +c^{2}-b^{2}=0 $

$ \Rightarrow \tan \alpha +tan\beta =\frac{2ac}{a^{2}-b^{2}} $ And $ \tan \alpha \tan \beta =\frac{c^{2}-b^{2}}{a^{2}-b^{2}} $

$ \Rightarrow x+y=\frac{2ac}{a^{2}-b^{2}} $ and $ xy=\frac{c^{2}-b^{2}}{a^{2}-b^{2}} $

$ \Rightarrow 1-xy=\frac{a^{2}-c^{2}}{a^{2}-b^{2}}\Rightarrow \frac{x+y}{1-xy}=\frac{2ac}{a^{2}-c^{2}} $