Inverse Trigonometric Functions Question 71

Question: $ \sum\limits_{r=1}^{\infty }{{{\tan }^{-1}}( \frac{1}{1+r+r^{2}} )=….} $

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{4} $

C) $ \frac{2\pi }{3} $

D) None

Show Answer

Answer:

Correct Answer: B

$ \frac{1}{1+r+r^{2}}=\frac{1}{1+r(r+1)}=\frac{\frac{1}{r(r+1)}}{1+\frac{1}{r(r+1)}}=\frac{\frac{1}{r}-\frac{1}{r+1}}{1+\frac{1}{r}( \frac{1}{r+1} )} $

$ \therefore {{\tan }^{-1}}( \frac{1}{1+r+r^{2}} )={{\tan }^{-1}}\frac{1}{r}-{{\tan }^{-1}}\frac{1}{r+1} $

$ \therefore \sum\limits_{r=1}^{\infty }{{{\tan }^{-1}}( \frac{1}{1+r+r^{2}} )}={{\tan }^{-1}}1=\frac{\pi }{4} $