Inverse Trigonometric Functions Question 72

Question: Let $ x\in (0,1). $ The set of all x such that $ {{\sin }^{-1}}x>{{\cos }^{-1}}x, $ is the interval:

Options:

A) $ ( \frac{1}{2},\frac{1}{\sqrt{2}} ) $

B) $ ( \frac{1}{\sqrt{2}},1 ) $

C) $ (0,1) $

D) $ ( 0,\frac{\sqrt{3}}{2} ) $

Show Answer

Answer:

Correct Answer: B

Given $ {{\sin }^{-1}}x>{{\cos }^{-1}}x $ where $ x\in (0,1) $

$ \Rightarrow {{\sin }^{-1}}x>\frac{\pi }{2}-{{\sin }^{-1}}x\Rightarrow 2{{\sin }^{-1}}x>\frac{\pi }{2} $

$ \Rightarrow {{\sin }^{-1}}x>\frac{\pi }{4}\Rightarrow x>\sin \frac{\pi }{4}\Rightarrow x>\frac{1}{\sqrt{2}} $

Maximum value of $ {{\sin }^{-1}}x $ is $ \frac{\pi }{2} $

So, maximum value of x is 1, so, $ x\in ( \frac{1}{\sqrt{2}},1 ). $