Inverse Trigonometric Functions Question 75

Question: The set of values of x for which the identity $ {{\cos }^{-1}}x+{{\cos }^{-1}}( \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}} )=\frac{\pi }{3} $ holds good is

Options:

A) $ [ 0,1 ] $

B) $ [ 0,\frac{1}{2} ] $

C) $ [ \frac{1}{2},1 ] $

D) $ { -1,0,1 } $

Show Answer

Answer:

Correct Answer: C

Case 1: If $ 0\le x\le \frac{1}{2} $ , then $ {{\cos }^{-1}}( \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}} ) $

$ {{\cos }^{-1}}( x\times \frac{1}{2}+\sqrt{1-x^{2}}\frac{\sqrt{3}}{2} ) $

$ ={{\cos }^{-1}}x-{{\cos }^{-1}}\frac{1}{2} $

Therefore, the equation is $ {{\cos }^{-1}}x+{{\cos }^{-1}}x-{{\cos }^{-1}}\frac{1}{2}=\frac{\pi }{3}\Rightarrow x=\frac{1}{2}. $

Case 2: if $ \frac{1}{2}\le x\le 1, $ then $ {{\cos }^{-1}}( \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}} )={{\cos }^{-1}}\frac{1}{2}-{{\cos }^{-1}}x $

Therefore, the equation is $ {{\cos }^{-1}}x+{{\cos }^{-1}}\frac{1}{2}-{{\cos }^{-1}}x=\frac{\pi }{3}, $ which is an identity. Hence, the identity holds good for $ x\in [ \frac{1}{2},1 ] $ .