Inverse Trigonometric Functions Question 8

Question: $ {{\cot }^{-1}}[{{(\cos \alpha )}^{1/2}}]-{{\tan }^{-1}}[{{(\cos \alpha )}^{1/2}}]=x, $ then $ \sin x= $

[AIEEE 2002]

Options:

A) $ {{\tan }^{2}}( \frac{\alpha }{2} ) $

B) $ {{\cot }^{2}}( \frac{\alpha }{2} ) $

C) $ \tan \alpha $

D) $ \cot ( \frac{\alpha }{2} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ {{\tan }^{-1}}[ \frac{1}{\sqrt{\cos \alpha }} ]-{{\tan }^{-1}}[ \sqrt{\cos \alpha } ]=x $

Therefore $ {{\tan }^{-1}}[ \frac{\frac{1}{\sqrt{\cos \alpha }}-\sqrt{\cos \alpha }}{1+\frac{\sqrt{\cos \alpha }}{\sqrt{\cos \alpha }}} ]=x $

Therefore $ \tan x=\frac{1-\cos \alpha }{2\sqrt{\cos \alpha }} $

$ \therefore \sin x=\frac{1-\cos \alpha }{1+\cos \alpha }=\frac{2{{\sin }^{2}}\frac{\alpha }{2}}{2{{\cos }^{2}}\frac{\alpha }{2}}={{\tan }^{2}}( \frac{\alpha }{2} ) $ .