Inverse Trigonometric Functions Question 82

Question: The number of real solutions of $ {{\tan }^{-1}}\sqrt{x(x+1)}+{{\sin }^{-1}}\sqrt{x^{2}+x+1}=\frac{\pi }{2} $ is

[IIT 1999]

Options:

A) Zero

B) One

C) Two

D) Infinite

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{\tan }^{-1}}\sqrt{x(x+1)}+{{\sin }^{-1}}\sqrt{x^{2}+x+1}=\frac{\pi }{2} $

$ {{\tan }^{-1}}\sqrt{x(x+1)} $ is defined when $ x(x+1)\ge 0 $ -. .(i)

$ {{\sin }^{-1}}\sqrt{x^{2}+x+1} $ is defined when $ 0\le x(x+1)+1\le 1 $ or $ 0\le x(x+1)\le 0 $ -..(ii)

From (i) and (ii), $ x(x+1)=0 $

Or $ x=0 $ and -1. Hence number of solution is 2.