Inverse Trigonometric Functions Question 83

Question: $ {{\sin }^{-1}}( a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+… )+{{\cos }^{-1}}(1+b+b^{2}+…)=\frac{\pi }{2} $ when

Options:

A) $ a=-3 $ and $ b=1 $

B) $ a=1 $ and $ b=-\frac{1}{3} $

C) $ a=\frac{1}{6} $ and $ b=\frac{1}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

The given relation is possible when $ a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+…=1+b+b^{2}+… $ Also $ -1\le a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+…\le 1 $ and $ -1\le 1+b+b^{2}+…\le 1 $

$ \Rightarrow | b |<1\Rightarrow | a |<3 $ and $ \frac{a}{1+\frac{a}{3}}=\frac{1}{1-b} $

$ \Rightarrow \frac{3a}{a+3}=\frac{1}{1-b}. $

There are infinitely many solutions. But in the given options, it is satisfied only when $ a=1 $ and $ b=-\frac{1}{3}. $