Inverse Trigonometric Functions Question 89

Question: If $ | {{\sin }^{-1}}x |+| {{\cos }^{-1}}x |=\frac{\pi }{2} $ , then x $ \in $

Options:

A) R

B) $ [ -1,1 ] $

C) $ [ 0,1 ] $

D) $ \phi $

Show Answer

Answer:

Correct Answer: C

$ | {{\sin }^{-1}}x |+| {{\cos }^{-1}}x |=\frac{\pi }{2} $

$ \Rightarrow | {{\sin }^{-1}}x |+{{\cos }^{-1}}x=\frac{\pi }{2} $ ( $ \therefore {{\cos }^{-1}}x $ is always non-negative)
$ \Rightarrow | {{\sin }^{-1}}x |={{\sin }^{-1}}x $

$ \Rightarrow {{\sin }^{1}}x\ge 0\Rightarrow 0\le {{\sin }^{-1}}x\le \frac{\pi }{2} $

$ \Rightarrow 0\le x\le 1 $