Inverse Trigonometric Functions Question 9

Question: If $ {{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\pi , $ then $ \frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}= $

[MP PET 1991]

Options:

A) 0

B) 1

C) $ \frac{1}{xyz} $

D) $ xyz $

Show Answer

Answer:

Correct Answer: B

Solution:

$ {{\tan }^{-1}}(x)+{{\tan }^{-1}}(y)+{{\tan }^{-1}}(z)=\pi $

Therefore $ {{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi -{{\tan }^{-1}}z $

Therefore $ \frac{x+y}{1-xy}=-z\Rightarrow x+y=-z+xyz $

Therefore $ x+y+z=xyz $ .

Dividing by xyz, we get $ \frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1 $ .

Note: Students should remember this question as a formula.