Inverse Trigonometric Functions Question 93

Question: What is the value of: $ \cos [ {{\tan }^{-1}}{ \tan ( \frac{15\pi }{4} ) } ]? $

Options:

A) $ -\frac{1}{\sqrt{2}} $

B) 0

C) $ \frac{1}{\sqrt{2}} $

D) $ \frac{1}{2\sqrt{2}} $

Show Answer

Answer:

Correct Answer: C

The given trigonometric expression is: $ \cos [ {{\tan }^{-1}}{ \tan ( \frac{15\pi }{4} ) } ] $

$ =\cos [ {{\tan }^{-1}}{ \tan ( 4\pi -\frac{\pi }{4} ) } ] $

$ =\cos [ {{\tan }^{-1}}{ -\tan \frac{\pi }{4} } ]=\cos [ {{\tan }^{-1}}\tan ( \frac{-\pi }{4} ) ] $ Since, $ {{\tan }^{-1}}\theta $ is defined for $ \frac{-\pi }{2}<\theta <\frac{-\pi }{2} $

$ =\cos ( \frac{-\pi }{4} ) $

$ \cos \frac{\pi }{4}=\frac{1}{\sqrt{2}} $ [since $ \cos (-\theta )=cos\theta $ ]