Inverse Trigonometric Functions Question 98

Question: The value of $ {{\sin }^{-1}}{ \cot ( {{\sin }^{-1}}\sqrt{( \frac{2-\sqrt{3}}{4} )}+{{\cos }^{-1}}\frac{\sqrt{12}}{4}+{{\sec }^{-1}}\sqrt{2} ) } $ is

Options:

A) 0

B) $ \frac{\pi }{4} $

C) $ \frac{\pi }{6} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: A

We have $ {{\sin }^{-1}}{ \cot ( {{\sin }^{-1}}\sqrt{( \frac{2-\sqrt{3}}{4} )}+{{\cos }^{-1}}\frac{\sqrt{12}}{4}+{{\sec }^{-1}}\sqrt{2} ) } $

$ ={{\sin }^{-1}}{ \cot ( {{\sin }^{-1}}\sqrt{{{( \frac{\sqrt{3}-1}{2\sqrt{2}} )}^{2}}}+{{\cos }^{-1}}\frac{\sqrt{3}}{2}+{{\cos }^{-1}}\frac{1}{\sqrt{2}} ) } $

$ ={{\sin }^{-1}}{cot(15{}^\circ +30{}^\circ +45{}^\circ )}=si{n^{-1}}(cot90{}^\circ ) $

$ ={{\sin }^{-1}}0=0 $