Limits Continuity And Differentiability Question 100

If $ f(x)= \begin{cases} \frac{x\log \cos x}{\log (1+x^{2})}, & x\ne 0 \ 0, & x=0 \end{cases} .\text{then }f(x)\text{ is} $ is

Options:

A) Continuous as well as differentiable at x = 0

B) Continuous but not differentiable at x = 0

C) Differentiable but not continuous at x = 0

D) Neither continuous nor differentiable at x = 0

Show Answer

Answer:

Correct Answer: A

Solution:

We have, $ Lf’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0-h)-f(0)}{-h}=\underset{h\to 0}{\mathop{\lim }}\frac{-h\log \cosh (0-h)}{-h\log (1+h^{2})} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{\log \cosh (h)}{\log (1+h^{2})}( \frac{0}{0}form ) $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{-\tan h}{2h/(1+h^{2})}=-1/2 $

$ Rf’(0)=\underset{h\to 0}{\mathop{\lim }}\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }}\frac{h\log \cosh h}{h\log (1+h^{2})} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{\log \cosh (h)}{\log (1+h^{2})}( \frac{0}{0}form ) $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{-\tanh}{2h/(1+h^{2})}=\frac{-1}{2} $ Since $ Lf’(0)=Rf’(0), $ therefore $ f(x) $ is differentiable at $ x=0 $ if $ f(x) $ is continuous at $ x=0 $ Since differentiability is a local property $ \Rightarrow $ continuity, therefore f(x) is continuous at x = 0.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें