Limits Continuity And Differentiability Question 104

Question: Which one of the following is correct in respect of the function $ f(x)=| x |+x^{2} $

Options:

A) $ f(x) $ is not continuous at x = 0

B) $ f(x) $ is differentiable at x = 0

C) $ f(x) $ is continuous but not differentiable at x = 0

D) None of the above

Show Answer

Answer:

Correct Answer: C

Solution:

$ \because f(x)=| x |+x^{2} $

$ \Rightarrow f(x)= \begin{matrix} x^{2}+x, & x\ge 0 \\ x^{2}-x, & x<0 \\ \end{matrix} . $ LHL $ =\underset{x\to {0^{-}}}{\mathop{\lim }}f(x) $

$ =\underset{h\to {0^{-}}}{\mathop{\lim }}f(0-h)=\underset{h\to 0}{\mathop{\lim }}{{(0-h)}^{2}}-(0-h) $

$ =\underset{h\to 0}{\mathop{\lim }}h^{2}+h=0 $ and RHL $ =\underset{x\to 0}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }}f(0+h) $

$ =\underset{h\to 0}{\mathop{\lim }}{{(0+h)}^{2}}+(0+h) $

$ =\underset{h\to 0}{\mathop{\lim }}h^{2}+h=0 $

$ \Rightarrow LHL=RHL=f(0) $

$ \Rightarrow f(x) $ is continuous at $ x=0 $ Now, $ LHD=\underset{h\to 0}{\mathop{\lim }}\frac{f(0-h)-f(0)}{-h} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{h^{2}+h}{-h}=-\underset{h\to 0}{\mathop{\lim }}h+1=-1 $ and, $ RHD=\underset{h\to 0}{\mathop{\lim }}\frac{f(0+h)-f(0)}{h} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{h^{2}+h}{h}=\underset{h\to 0}{\mathop{\lim }}h+1=1 $ Thus, $ LHD\ne RHD $

$ \Rightarrow f(x) $ is not differentiable at $ x=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें