Limits Continuity And Differentiability Question 106

Question: Let $ f(x+y)=f(x)+f(y) $ and $ f(x)=x^{2}g(x) $ for all $ x,y\in R $ , where g(x) is continuous function. Then f?(x) is equal to

Options:

A) g’(x)

B) g(0)

C) g(0)+g’(x)

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

We have $ f’(x)=\underset{h\to 0}{\mathop{\lim }}\frac{f(x+h)-(x)}{h} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{f(x)+f(h)-f(x)}{h} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{f(h)}{h}=\underset{h\to 0}{\mathop{\lim }}\frac{h^{2}g(h)}{h}=0.g(0)=0 $ [ $ \because $ g is continuous therefore $ \underset{h\to 0}{\mathop{\lim }}g(h)=g(0) $ ]