Limits Continuity And Differentiability Question 107

Question: Given $ f:[-2a,2a]\to R $ is an odd function such that the left hand derivative at x = a is zero and $ f(x)=f(2a-x)\forall x\in (a,2a), $ then its left had derivative at $ x=-a $ is

Options:

A) 0

B) a

C) -a

D) Does not exist

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ f’(a)=\underset{h\to 0}{\mathop{\lim }}\frac{f(a-h)-f(a)}{-h}=0….(1) $ Now $ f’(-{a^{-}})=\underset{h\to 0}{\mathop{\lim }}\frac{f(-a-h)-f(-a)}{-h} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{-f(a+h)+f(a)}{-h} $ [ $ \because f(x) $ is odd function] $ =\underset{h\to 0}{\mathop{\lim }}\frac{-f(a-h)+f(a)}{-h} $

$ [\because f(2a-x)=f(x)\Rightarrow f(a+x)=f(a-x)] $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{f(a-h)-f(a)}{h}=0 $ [From (1)]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें