Limits Continuity And Differentiability Question 108

Question: If $ y={{(1+1/x)}^{x}} $ then $ \frac{2\sqrt{y_2(2)+1/8}}{(log3/2-1/3)} $ is equal to-

Options:

A) 3

B) 4

C) 1

D) 2

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y={{( 1+\frac{1}{x} )}^{x}} $

Taking logarithm of both sides, we get

$ \log y=x[ \log ( 1+\frac{1}{x} ) ] $

$ \Rightarrow \frac{1}{y}y_1(x)=\frac{x^{2}}{x+1}( -\frac{1}{x^{2}} )+\log ( 1+\frac{1}{x} ) $

$ =-\frac{1}{x+1}+\log ( 1+\frac{1}{x} )…(1) $

Since, $ y(2)={{(1+1/2)}^{2}}=9/4 $

So, $ y_1(2)=(9/4)( -\frac{1}{3}+\log \frac{3}{2} ) $

Again differentiate eq. (1) w.r.t (x), we get

$ \frac{y(x)y_2(x)-{{[y_1(x)]}^{2}}}{{{(y(x))}^{2}}}=\frac{1}{{{(1+x)}^{2}}}-\frac{1}{x(x+1)} $

By putting $ x=2 $ , we get

$ \frac{y(2)y_2(2)-{{(y_1(2))}^{2}}}{{{(y(2))}^{2}}}=\frac{-1}{18} $

Now, put value of y(2) and $ y_1(2) $

$ \Rightarrow y_2(2)=( \frac{9}{4} ){{( -\frac{1}{3}+\log \frac{3}{2} )}^{2}}-\frac{1}{8} $

$ {{( y_2(2)+\frac{1}{8} )}^{4}}=9{{( \log \frac{3}{2}-\frac{1}{3} )}^{2}} $

$ \Rightarrow $ Required expression = 3