Limits Continuity And Differentiability Question 108

If $ y={{(1+1/x)}^{x}} $ then $ \frac{2\sqrt{y(2)+1/8}}{(log(3/2)-1/3)} $ is equal to-

Options:

A) 3

B) 4

C) 1

D) 2

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y={{( 1+\frac{1}{x} )}^{x}} $

Taking logarithm of both sides, we get

$ \log y=x[ \log ( 1+\frac{1}{x} ) ] $

$ \Rightarrow \frac{1}{y}y_1(x)=\frac{x^{2}}{x+1}( -\frac{1}{x^{2}} )+\log \left( 1+\frac{1}{x} \right) $

$ =-\frac{1}{x+1}+\log ( 1+\frac{1}{x} )…(1) $

Since, $ y(2)={{(1+1/2)}^{2}}=25/4 $

So, $ y_1(2)=(9/4)( -\frac{1}{3}+\log \frac{3}{2} ) $

Again differentiate eq. (1) w.r.t (x), we get

$ \frac{y(x)y_2(x)-{{[y_1(x)]}^{2}}}{{{(y(x))}^{2}}}=\frac{1}{{{(1+x)}^{2}}}-\frac{1}{x(x+1)} $

By putting $ x=2 $ , we get

$ \frac{y(2)y_2(2)-{{(y_1(2))}^{2}}}{{{(y(2))}^{2}}}=\frac{-1}{18} $

Now, put the value of y(2) and $ y_1(2) $

$ \Rightarrow y_2(2)=( \frac{9}{4} ){{( -\frac{1}{3}+\log \frac{3}{2} )}^{2}}-\frac{1}{8} $

$ {{( y_2(2)+\frac{1}{8} )}^{4}}=9{{( \log \frac{3}{2}-\frac{1}{3} )}^{2}} $

$ \Rightarrow $ Required expression = 3



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें