Limits Continuity And Differentiability Question 109

Question: If $ f(xy)=f(x).f(y) $ for all x, y and f(x) is continuous at x = 2, then f(x) is not necessarily continuous in:

Options:

A) $ (-\infty ,\infty ) $

B) $ (0,\infty ) $

C) $ (-\infty ,0) $

D) $ (2,\infty ) $

Show Answer

Answer:

Correct Answer: A

Solution:

Given, $ f(xy)=f(x).f(y) $ for all x, y, ?.(1)

$ f(x) $ is continuous at x = 2,

i.e., $ \underset{x\to 2}{\mathop{Lt}}f(x)=f(2)…(2) $

Let $ a\ne 0 $

Now, $ \underset{x\to a}{\mathop{Lt}}f(x)=\underset{h\to 2}{\mathop{Lt}}f( \frac{ah}{2} ) $

$ [ puttingx=\frac{ah}{2}sothath=\frac{2x}{a} ] $

$ =f( \frac{a}{2} )\underset{h\to 2}{\mathop{Lt}}f(h)=f( \frac{a}{2} ).f(2)=f( \frac{a}{2}.2 )=f(a) $

Hence, $ f(x) $ is necessarily continuous at x = a for all $ a\ne 0 $ .

At x = 0, f(x) may or may not be continuous

Hence f(x) is not necessarily continuous in $ (-\infty ,+\infty ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें