Limits Continuity And Differentiability Question 109

Question: If $ f(xy)=f(x).f(y) $ for all x, y and f(x) is continuous at x = 2, then f(x) is not necessarily continuous in:

Options:

A) $ (-\infty ,\infty ) $

B) $ (0,\infty ) $

C) $ (-\infty ,0) $

D) $ (2,\infty ) $

Show Answer

Answer:

Correct Answer: A

Solution:

Given, $ f(xy)=f(x).f(y) $ for all x, y, ?.(1)

$ f(x) $ is continuous at x = 2,

i.e., $ \underset{x\to 2}{\mathop{Lt}}f(x)=f(2)…(2) $

Let $ a\ne 0 $

Now, $ \underset{x\to a}{\mathop{Lt}}f(x)=\underset{h\to 2}{\mathop{Lt}}f( \frac{ah}{2} ) $

$ [ puttingx=\frac{ah}{2}sothath=\frac{2x}{a} ] $

$ =f( \frac{a}{2} )\underset{h\to 2}{\mathop{Lt}}f(h)=f( \frac{a}{2} ).f(2)=f( \frac{a}{2}.2 )=f(a) $

Hence, $ f(x) $ is necessarily continuous at x = a for all $ a\ne 0 $ .

At x = 0, f(x) may or may not be continuous

Hence f(x) is not necessarily continuous in $ (-\infty ,+\infty ) $ .