Limits Continuity And Differentiability Question 112

Question: The function $ f(x)=\frac{{{(3^{x}-1)}^{2}}}{\sin x\cdot \ln (1+x)},x\ne 0 $ , is continuous at x=0. Then the value of f(0) is

Options:

A) $ 2{\log _{e}}3 $

B) $ {{(2{\log _{e}}3)}^{2}} $

C) $ {\log _{e}}6 $

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

Given f(x) is continuous at x=0.

Therefore, $ \underset{x\to 0}{\mathop{\lim }}f(x)=f(0) $

Or $ \underset{x\to 0}{\mathop{\lim }}\frac{{{(3^{x}-1)}^{2}}}{\sin x\ln (1+x)}=f(0) $

Or $ f(0)=\underset{x\to 0}{\mathop{\lim }}\frac{{{( \frac{3^{x}-1}{x} )}^{2}}}{( \frac{\sin x}{x} )( \frac{\ln (1+x)}{x} )}={{(ln3)}^{2}} $