Limits Continuity And Differentiability Question 116

Question: Suppose $ f(x) $ is differentiable at $ x=1 $ and $ \underset{h\to 0}{\mathop{\lim }}\frac{1}{h}f(1+h)=5 $ then $ f’(1) $ equals

Options:

A) 3

B) 4

C) 5

D) 6

Show Answer

Answer:

Correct Answer: C

Solution:

$ f’(1)=\underset{h\to 0}{\mathop{\lim }}\frac{f(1+h)-f(1)}{h}; $

As function is differentiable so it is continuous as it is given that $ \underset{h\to 0}{\mathop{\lim }}\frac{f(1+h)}{h} $ = 5 and hence $ f(1)=0 $

Hence $ f’(1)=\underset{h\to 0}{\mathop{\lim }}\frac{f(1+h)}{h}=5 $