Limits Continuity And Differentiability Question 120

Question: If $ f(x)=\frac{1}{1-x} $ , then the points of discontinuity of the function $ f[f{f(x)}] $ are

Options:

A) {0, -1}

B) {0, 1}

C) {1, -1}

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

We have, $ f(x)=\frac{1}{1-x} $ . As at $ x=1,f(x) $ is not defined, $ x=1 $ is a point of discontinuity of f(x). If $ x\ne 1,[f(x)]=f( \frac{1}{1-x} )=\frac{1}{1-1/(1-x)}=\frac{x-1}{x} $

$ \therefore x=0,1 $ are points of discontinuity of $ f[f(x)] $ . If $ x\ne 0,x\ne 1 $

$ f[f{f(x)}]=f( \frac{x-1}{x} )=\frac{1}{1-\frac{(x-1)}{x}}=x $