Limits Continuity And Differentiability Question 13

Question: A point where function $ f(x)=[sin[x]] $ is not continuous in $ (0,2\pi ) $ , [.] denotes the greatest integer $ \le x $ , is

Options:

A) (3, 0)

B) (2, 0)

C) (1, 0)

D) none of these

Show Answer

Answer:

Correct Answer: D

Solution:

For $ 0\le x<1,f(x)=\sin x=0, $

$ 1\le x<2,f(x)=\sin(1)=0, $

$ 2\le x<3,f(x)=\sin(2)=0, $

$ 3\le x<4,f(x)=\sin(3)=0, $

$ 4\le x<5,f(x)=\sin(4)\approx0.7568, $

Hence, there is discontinuity at point $ ( 4,-1 ) $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index