Limits Continuity And Differentiability Question 13

Question: A point where function $ f(x)=[sin[x]] $ is not continuous in $ (0,2\pi ) $ , [.] denotes the greatest integer $ \le x $ , is

Options:

A) (3, 0)

B) (2, 0)

C) (1, 0)

D) none of these

Show Answer

Answer:

Correct Answer: D

Solution:

For $ 0\le x<1,f(x)=[sin0]=0, $

$ 1\le x<2,f(x)=[sin1]=0, $

$ 2\le x<3,f(x)=[sin2]=0, $

$ 3\le x<4,f(x)=[sin3]=0, $

$ 4\le x<5,f(x)=[sin4]=-1, $

Hence, there is discontinuity at point $ ( 4,-1 ) $