Limits Continuity And Differentiability Question 15

Question: A value of c for which conclusion of Mean Value Theorem holds for the function $ f(x)={\log _{e}}x $ on the interval [1, 3] is

Options:

A) $ log_3e $

B) $ log _{e}3 $

C) $ 2log_3e $

D) $ \frac{1}{2}{\log_3}e $

Show Answer

Answer:

Correct Answer: C

Solution:

Using Lagrange’s Mean Value Theorem

Let f(x) be a function defined on [a, b] then, $ f’(c)=\frac{f(b)-f(a)}{b-a}…(i) $

$ c\in [a,b]\therefore Givenf(x)={\log _{e}}x\therefore f’(x)=\frac{1}{x} $

$ \therefore $ equation (i) become $ \frac{1}{c}=\frac{f(3)-f(1)}{3-1} $

$ \Rightarrow \frac{1}{c}=\frac{{\log _{e}}3-{\log _{e}}1}{2}=\frac{{\log _{e}}3}{2} $

$ \Rightarrow c=\frac{2}{{\log _{e}}3}\Rightarrow c=2{\log_3}e $