Limits Continuity And Differentiability Question 18

Question: If the derivative of the function $ f(x)= \begin{cases} ax^{2}+b & x<-1 \\ bx^{2}+ax+4 & x\ge -1 \\ \end{cases} . $ is everywhere continuous, then what are the values of a and b?

Options:

A) a=2, b=3

B) a=3, b=2

C) a=-2, b=-3

D) a=-3, b=-2

Show Answer

Answer:

Correct Answer: A

Solution:

Derivative of $ f(x)= \begin{cases} ax^{2}+b & x<-1 \\ bx^{2}+ax+a & x\ge -1 \\ \end{cases} . $ is $ f’(x)= \begin{cases} 2ax & x<-1 \\ 2bx+a, & x\ge -1 \\ \end{cases} . $

If $ f’(x) $ is continuous everywhere then it is also continuous at $ x=-1 $

$ {{. f’(x) |} _{x=-1}}=-2a=-2b+a $ or, $ 3a=2b $ - (i)

From the given choice $ a=2,b=3 $ satisfied this equation.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें