Limits Continuity And Differentiability Question 24

Question: If function $ \text{f(x)=} \begin{cases} & \text{x,if x is rational} \\ & \text{1-x,if x is irrational} \\ \end{cases} .\text{,then} $ the number of points at which f(x) is continuous, is-

Options:

A) $ \infty $

B) 1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ x=a\in Q;f(a)=a $

$ f({a^{+}})=1-a $

or $ a;f({a^{-}})=1 $

- a or a continuous at where $ 1-a=a\Rightarrow a=1/2 $

$ \Rightarrow $ continuous at one point.