Limits Continuity And Differentiability Question 28

Question: Consider the following in respect of the function $ f(x)= \begin{cases} 2+x, & x\ge 0 \\ 2-x, & x<0 \\ \end{cases} . $
  1. $ \underset{x\to 1}{\mathop{\lim f}}(x) $ does not exist.
  2. f(x) is differentiable at x = 0
  3. f(x) is continuous at x = 0 Which of the above statements is/are correct?

Options:

A) 1 only

B) 3 only

C) 2 and 3 only

D) 1 and 3 only

Show Answer

Answer:

Correct Answer: D

Solution:

For $ x\ge 0 $

$ \underset{x\to 1}{\mathop{\lim }}f(x)=\underset{x\to 1}{\mathop{\lim }}2+x=2+1=3 $ For $ x<0 $

$ \underset{x\to 1}{\mathop{\lim }}f(x)=\underset{x\to 1}{\mathop{\lim }}2-x=2-1=1 $ So, $ \underset{x\to 1}{\mathop{\lim }}f(x) $ does not exist. At $ x=0 $

$ RHL:\underset{h\to {0^{+}}}{\mathop{\lim }}f(0+h)=\underset{h\to 0}{\mathop{\lim }}2+h=2 $

$ LHL:\underset{h\to {0^{-}}}{\mathop{\lim }}f(0-h)=\underset{h\to 0}{\mathop{\lim }}2-h=2 $

$ f(0)=2+0=2. $ So, RHL = LHL = f(0)

$ \Rightarrow f(x) $ is continuous at $ x=0 $ Differentiability at $ x=0 $

$ LHD:\underset{h\to {0^{-}}}{\mathop{\lim }}\frac{f(0-h)-f(0)}{-h}=\underset{h\to {0^{-}}}{\mathop{\lim }}\frac{2+h-2}{-h} $

$ =\frac{-h}{h}=-1 $

$ RHD:\underset{h\to {0^{+}}}{\mathop{\lim }}\frac{f(0+h)-f(0)}{h}=\underset{h\to {0^{+}}}{\mathop{\lim }}\frac{2+h-2}{h}=1 $

Since $ LHD\ne RHD $

So, $ f(x) $ is not differentiable at $ x=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें