Limits Continuity And Differentiability Question 29

Question: If $ x^{a}y^{b}={{(x-y)}^{a+b}}, $ then the value of $ \frac{dy}{dx}-\frac{y}{x} $ is equal to

Options:

A) $ \frac{a}{b} $

B) $ \frac{b}{a} $

C) 1

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

$ x^{a}y^{b}={{(x-y)}^{a+b}} $ Taking log both the sides $ \log ( x^{a}y^{b} )=\log {{(x-y)}^{(a+b)}} $

$ a\log x+b\log y=(a+b)\log (x-y) $ differentiating both sides w.r.t ?x?. $ \frac{a}{x}+\frac{b}{y}\frac{dy}{dx}=\frac{(a+b)}{(x-y)}[ 1-\frac{dy}{dx} ] $

$ \frac{dy}{dx}[ \frac{b}{y}+\frac{a+b}{x-y} ]=\frac{a+b}{x-y}-\frac{a}{x} $

$ \frac{dy}{dx}[ \frac{bx-by+ay+by}{y(x-y)} ]=\frac{ax+bx-ax+ay}{x(x-y)} $

$ \frac{dy}{dx}[ \frac{bx+ay}{y} ]=\frac{bx+ay}{x} $

$ \frac{dy}{dx}=\frac{y}{x};\frac{dy}{dx}-\frac{y}{x}=0 $