Limits Continuity And Differentiability Question 30

Question: If $ f(x)={{(x+1)}^{\cot x}} $ is continuous at $ x=0 $ , then what is f (0) equal to?

Options:

A) 1

B) e

C) $ \frac{1}{e} $

D) $ e^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

For a function to be continuous at a point the limit should exist and should be equal to the value of the function at that point. Here point is x = 0 and $ \underset{x\to 0}{\mathop{\lim }}f(x)=\underset{x\to 0}{\mathop{\lim }}{{(x+1)}^{\cot x}} $

$ =\underset{x\to 0}{\mathop{\lim }}{{(x+1)}^{\cot x}}=\underset{x\to 0}{\mathop{\lim }}{{(1+x)}^{\frac{1}{x}.x\cot x}} $

$ =\underset{x\to 0}{\mathop{\lim }}{{(x+1)}^{\frac{1}{x}\underset{x\to 0}{\mathop{\lim }}\frac{x}{\tan x}}}=e^{1}=e $ Since limiting value of $ f(x)=e $ , when $ x\to 0,f(0) $ should also be equal to e.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें