Limits Continuity And Differentiability Question 30

Question: If $ f(x)={{(x+1)}^{\cot x}} $ is continuous at $ x=0 $ , then what is f (0) equal to?

Options:

A) 1

B) e

C) $ \frac{1}{e} $

D) $ e^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

For a function to be continuous at a point the limit should exist and should be equal to the value of the function at that point. Here point is x = 0 and $ \underset{x\to 0}{\mathop{\lim }}f(x)=\underset{x\to 0}{\mathop{\lim }}{{(x+1)}^{\cot x}} $

$ =\underset{x\to 0}{\mathop{\lim }}{{(x+1)}^{\cot x}}=\underset{x\to 0}{\mathop{\lim }}{{(1+x)}^{\frac{1}{x}.x\cot x}} $

$ =\underset{x\to 0}{\mathop{\lim }}{{(x+1)}^{\frac{1}{x}\underset{x\to 0}{\mathop{\lim }}\frac{x}{\tan x}}}=e^{1}=e $ Since limiting value of $ f(x)=e $ , when $ x\to 0,f(0) $ should also be equal to e.