Limits Continuity And Differentiability Question 32

Question: Which of the following functions is not differentiable at $ x=1 $ ?

Options:

A) $ f(x)=(x^{2}-1)| (x-1)(x-2) | $

B) $ f(x)=\sin (| x-1 |)-| x-1 | $

C) $ f(x)=\tan (| x-1 |)+| x-1 | $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=(x^{2}-1)| (x-1)(x-2) | $

$ f’({1^{+}})=\underset{h\to 0}{\mathop{\lim }}\frac{({{(1+h)}^{2}}-1)\cdot | h\cdot (1+h-2) |}{h}=0,f’({1^{-}}) $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{({{(1-h)}^{2}}-1) -h\cdot (1-h-2)}{-h}=0 $

Hence, it is differentiable at x = 0.

For, $ f(x)=sin(| x-1 |)-| x-1 | $

$ f’({0^{+}})=\underset{h\to 0}{\mathop{lim}}\frac{\sin h-h}{h}=0,f’({0^{-}}) $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{\sin | h |-| h |}{-h}=0\underset{h\to 0}{\mathop{\lim }}\frac{\sin h-h}{-h}=0 $

Hence, $ f(x) $ is differentiable at $ x=0 $

For $ f(x)=\tan (| x-1 |)+| x-1 | $

$ f’({0^{+}})=\underset{h\to 0}{\mathop{\lim }}\frac{\tan h - h}{h}=2 $ ,

$ f’({0^{-}})=\underset{h\to 0}{\mathop{\lim }}\frac{\tan | -h |+| -h |}{-h}=\underset{h\to 0}{\mathop{\lim }}\frac{\tan h+h}{-h}=-1 $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index