Limits Continuity And Differentiability Question 32

Question: Which of the following functions is not differentiable at $ x=1 $ ?

Options:

A) $ f(x)=(x^{2}-1)| (x-1)(x-2) | $

B) $ f(x)=\sin (| x-1 |)-| x-1 | $

C) $ f(x)=\tan (| x-1 |)+| x-1 | $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=(x^{2}-1)| (x-1)(x-2) | $

$ f’({1^{+}})=\underset{h\to 0}{\mathop{\lim }}\frac{({{(1+h)}^{2}}-1)| h\cdot (1+h-2) |-0}{h}=0,f’({1^{-}}) $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{({{(1-h)}^{2}}-1)| -h\cdot (1-h-2) |-0}{-h}=0 $

Hence, it is differentiable at x = 0

For, $ f(x)=sin(| x-1 |)-| x-1 | $

$ f’({0^{+}})=\underset{h\to 0}{\mathop{lim}}\frac{\sin h-h-0}{h}=0,f’({0^{-}}) $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{\sin | -h |-| -h |}{-h}=0\underset{h\to 0}{\mathop{\lim }}\frac{\sin h-h}{-h}=0 $

Hence, $ f(x) $ is differentiable at $ x=0 $

For $ f(x)=\tan (| x-1 |)+| x-1 | $

$ f’({0^{+}})=\underset{h\to 0}{\mathop{\lim }}\frac{\tan h+h-0}{h}=2 $ ,

$ f’({0^{-}})=\underset{h\to 0}{\mathop{\lim }}\frac{\tan | -h |+| -h |}{-h}=\underset{h\to 0}{\mathop{\lim }}\frac{\tan h+h}{-h}=-2 $