Limits Continuity And Differentiability Question 33

Question: Let $ f:R\to R $ be defined as $ f(x)=sin(| x |) $ Which one of the following is correct?

Options:

A) f is not differentiable only at 0

B) f is differentiable at 9 only

C) f is differentiable everywhere

D) f is non-differentiable at many points

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Given function is : $ f(x)=\sin | x | $

$ = \begin{matrix} \sin (x), & x\ge 0 \\ \sin (-x), & x<0 \\ \end{matrix} . $

$ = \begin{matrix} \sin ,x, & x\ge 0 \\ -\sin ,x, & x<0 \\ \end{matrix} . $ LHD at $ x=0=\underset{h\to 0}{\mathop{\lim }},\frac{f(0-h)-f(0)}{0-h-0} $

$ =\underset{h\to 0}{\mathop{\lim }},\frac{f(0-h)-f(0)}{-h}=\underset{h\to 0}{\mathop{\lim }},\frac{-\sin (-h)-0}{-h}=-1 $

RHD at $ x=0=\underset{h\to 0}{\mathop{\lim }},\frac{f(0+h)-f(x)}{0+h-0} $

$ =\underset{h\to 0}{\mathop{\lim }},\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }},\frac{\sin (h-0)}{h}=1 $

$ LHD\ne RHD $

$ f(x) $ is not differentiable at $ x=0 $ .