Limits Continuity And Differentiability Question 37

Question: Let $ f(x)= \begin{cases} 3x-4, & 0\le x\le 2 \\ 2x+\ell , & 2<x\le 9 \\ \end{cases} . $ If f is continuous at x = 2, then what is the value of $ \ell $ ?

Options:

A) 0

B) 2

C) -2

D) -1

Show Answer

Answer:

Correct Answer: C

Solution:

Given function is: $ f(x)= \begin{cases} 3x-4, & 0\le x\le 2 \\ 2x+\ell , & 2<x\le 9 \\ \end{cases} . $ and also given that f(x) is continuous at $ x=2 $ . For a function to be continuous at a point LHL = RHL = V.F. at that point. $ f(2)=2=V.F. $

$ \Rightarrow RHL:\underset{x\to 2}{\mathop{\lim }}(2x+\ell )=3(2)-4 $

$ \Rightarrow \underset{h\to 0}{\mathop{\lim }}{ 2(2+h)+\ell }=6-4 $

$ \Rightarrow 4+\ell =2,\Rightarrow \ell =-2 $