Limits Continuity And Differentiability Question 4

Question: If $ f(x)= \begin{cases} mx+1x\le \frac{\pi }{2} \\ \sin x+nx>\frac{\pi }{2} \\ \end{cases}$is continuous at . $ x=\frac{\pi }{2} $ , then which one of the following is correct?

Options:

A) m = 1, n = 0

B) $ m=\frac{n\pi }{2}+1 $

C) $ n=m( \frac{\pi }{2} ) $

D) $ m=n=\frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given function is $ f(x)= \begin{cases} mx+1, & x\le \frac{\pi }{2} \\ \sin x+n, & x>\frac{\pi }{2} \\ \end{cases} . $

As given this function is continuous at $ x=\frac{\pi }{2} $ .

So, limit of function when $ x\to \frac{\pi }{2}=f( \frac{\pi }{2} ) $

$ \Rightarrow \underset{x\to \frac{\pi }{2}+}{\mathop{\lim }}(\sin x+n)=f( \frac{\pi }{2} ) $

$ \Rightarrow \underset{h\to 0}{\mathop{\lim }}( \sin ( \frac{\pi }{2}+h )+n )=\frac{m\pi }{2}+1 $

$ \Rightarrow \sin \frac{\pi }{2}+n=\frac{m\pi }{2}+1 $

$ \Rightarrow 1+n=\frac{m\pi }{2}+1 $

$ \Rightarrow n=\frac{m\pi }{2} $