Limits Continuity And Differentiability Question 4

Question: If $ f(x)= \begin{cases} mx+1x\le \frac{\pi }{2} \\ \sin x+nx>\frac{\pi }{2} \\ \end{cases}$is continuous at . $ x=\frac{\pi }{2} $ , then which one of the following is correct?

Options:

A) m = 1, n = 0

B) $ m=\frac{n\pi }{2}+1 $

C) $ n=m( \frac{\pi }{2} ) $

D) $ m=n=\frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given function is $ f(x)= \begin{cases} mx+1, & x\le \frac{\pi }{2} \\ \sin x+n, & x>\frac{\pi }{2} \\ \end{cases} . $

As given this function is continuous at $ x=\frac{\pi }{2} $ .

So, limit of function when $ x\to \frac{\pi }{2}=f( \frac{\pi }{2} ) $

$ \Rightarrow \underset{x\to \frac{\pi }{2}+}{\mathop{\lim }}(\sin x+n)=f( \frac{\pi }{2} ) $

$ \Rightarrow \underset{h\to 0}{\mathop{\lim }}( \sin ( \frac{\pi }{2}+h )+n )=\frac{m\pi }{2}+1 $

$ \Rightarrow \sin \frac{\pi }{2}+n=\frac{m\pi }{2}+1 $

$ \Rightarrow 1+n=\frac{m\pi }{2}+1 $

$ \Rightarrow n=\frac{m\pi }{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें