Limits Continuity And Differentiability Question 40

Question: If $ f(x)={\log _{x}}(Inx) $ , then at $ x=e,f’(x) $ equals-

Options:

A) 0

B) 1

C) e

D) 1/e

Show Answer

Answer:

Correct Answer: D

Solution:

$ \because lnx={\log _{e}}x,so $

$ f(x)={\log _{x}}({\log _{e}}x)=\frac{\log (\log x)}{\log x} $

$ \Rightarrow f’(x)=\frac{\log x( \frac{1}{x\log x} )-\log (\log x).\frac{1}{x}}{{{(\log x)}^{2}}} $

$ \therefore f’(e)=\frac{1/e-0}{{{(1)}^{2}}}=\frac{1}{e} $