Limits Continuity And Differentiability Question 41

Question: The function $ f(x) $ defined by $ f(x)= \begin{matrix} {\log _{(4x-3)}}(x^{2}-2x+5),\frac{3}{4}<x<1andx>1 \\ 4,x=1 \\ \end{matrix} . $

Options:

A) is continuous at x = 1

B) is discontinuous at x=1 since $ f({1^{+}}) $ does not exist, though $ f({1^{-}}) $ exists

C) is discontinuous at x=1 since $ f({1^{-}}) $ does not exist though $ f({1^{+}}) $ exists

D) is discontinuous at x=1 since neither $ f({1^{+}}) $ nor $ f({1^{-}}) $ exist.

Show Answer

Answer:

Correct Answer: D

Solution:

We have $ \underset{x\to {1^{-}}}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }}f(1-h) $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{\log (4+h^{2})}{\log (1-4h)}=-\infty $

And $ \underset{x\to {1^{+}}}{\mathop{\lim }}f(x)=\underset{h\to 0^{+}}{\mathop{\lim }}f(1+h)=\underset{h\to 0}{\mathop{\lim }}\frac{\log (4+h^{2})}{\log (1+4h)}=\infty $ So, $ f({1^{-}}) $

and $ f({1^{+}}) $ do not exist.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें