Limits Continuity And Differentiability Question 45

Question: The set of points of discontinuity of the function $ f(x)=\underset{n\to \infty }{\mathop{\lim }}\frac{{{(2\sin x)}^{2}}^{n}}{3^{n}-{{(2\cos x)}^{2n}}} $ is given by

Options:

A) R

B) $ { n\pi \pm \frac{\pi }{3},n\in I } $

C) $ { n\pi \pm \frac{\pi }{6},n\in I } $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

We have, $ f(x)=\underset{n\to \infty }{\mathop{\lim }}\frac{{{(2\sin x)}^{2n}}}{-{{(2\cos x)}^{2n}}} $

$ =\underset{n\to \infty }{\mathop{\lim }}\frac{{{(2\sin x)}^{2n}}}{{{(\sqrt{3})}^{2n}}-{{(2\cos x)}^{2n}}} $

$ f(x) $ is discontinuous when $ {{(\sqrt{3})}^{2n}}-{{(2\cos x)}^{2n}}=0 $

i.e. $ \cos x=\pm \frac{\sqrt{3}}{2}\Rightarrow x=n\pi \pm \frac{\pi }{6}(n\in I) $