Limits Continuity And Differentiability Question 46

Question: Which of the following function is continuous at for all value of x?

(i) $ f( x ) $ =sgn $ (x^{3}-x) $

(ii) $ f( x ) $ =sgn $ (2\cos x-1) $

(iii) $ f( x ) $ =sgn $ (x^{2}-2x+3) $

Options:

A) Only (i)

B) Only (iii)

C) Both (ii) and (iii)

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

(i) $ f( x ) $ =sgn $ (x^{3}-x) $

Here $ x^{3}-x=0\Rightarrow x=0,-1,1 $

Hence, $ f(x) $ is discontinuous at $ x=0,-1,1 $ . (ii)

If $ f( x ) $ =sgn $ (2\cos x-1) $

Here, $ 2\cos x-1=0 $

$ \Rightarrow \cos x=1/2\Rightarrow x=2n\pi +(\pi /3) $

$ n\in Z, $ where $ f(x) $ is discontinuous. (iii) $ f( x ) $ =sgn $ (x^{2}-2x+3) $

Here, $ x^{2}-2x+3>0 $ for all x.

Thus, $ f(x)=1 $ for all x

Hence continuous for all x.