Limits Continuity And Differentiability Question 47

Question: Which one of the following statements is correct in respect of the function $ f(x)=x^{3}\sin x $ ?

Options:

A) f’(x) changes sign from positive to negative at x = 0

B) f ‘(x) changes sign from negative to positive at x = 0

C) Does not change sign at x = 0

D) $ f’’(0)\ne 0 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=x^{3}\sin x $

$ f’(x)=3x^{2}\sin x+x^{3}\cos x $

$ f’(x)=0 $

$ \Rightarrow 3x^{2}\sin x+x^{3}\cos x=0 $

$ \Rightarrow x^{2}(3\sin x+x\cos x)=0 $

$ \Rightarrow x=0,3\sin x+x\cos x=0….(1) $ Put $ x=0 $ in (1) $ 3\sin x=0\Rightarrow \sin x=0 $

$ {f^{\centerdot }}(x)=6x\sin x+3x^{2}\cos x+3x^{2}\cos x+x^{3}(-\sin x) $

$ f’’(0)=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें