Limits Continuity And Differentiability Question 47

Question: Which one of the following statements is correct in respect of the function $ f(x)=x^{3}\sin x $ ?

Options:

A) f’(x) changes sign from positive to negative at x = 0

B) f ‘(x) changes sign from negative to positive at x = 0

C) Does not change sign at x = 0

D) $ f’’(0)\ne 0 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=x^{3}\sin x $

$ f’(x)=3x^{2}\sin x+x^{3}\cos x $

$ f’(x)=0 $

$ \Rightarrow 3x^{2}\sin x+x^{3}\cos x=0 $

$ \Rightarrow x^{2}(3\sin x+x\cos x)=0 $

$ \Rightarrow x=0,3\sin x+x\cos x=0….(1) $ Put $ x=0 $ in (1) $ 3\sin x=0\Rightarrow \sin x=0 $

$ {f^{\centerdot }}(x)=6x\sin x+3x^{2}\cos x+3x^{2}\cos x+x^{3}(-\sin x) $

$ f’’(0)=0 $