Limits Continuity And Differentiability Question 5

Question: Consider the function $ f(x)= \begin{cases} x^{2}, & x>2 \\ 3x-2, & x\le 2 \\ \end{cases} . $ . Which one of the following statements is correct in respect of the above function?

Options:

A) f(x) is derivable but not continuous at x = 2.

B) f(x) is continuous but not derivable at x = 2.

C) f(x) is neither continuous nor derivable at x = 2.

D) f(x) is continuous as well as derivable at x = 2.

Show Answer

Answer:

Correct Answer: B

Solution:

First we check continuity at $ x=2 $

L.H.L. = $ \underset{h\to 0}{\mathop{\lim }}f(2-h)=\underset{h\to 0}{\mathop{\lim }}3(2-h)-2 $

$ =\underset{h\to 0}{\mathop{\lim }}4-3h=4 $

R.H.L. $ =\underset{h\to 0}{\mathop{\lim }}f(2+h)=\underset{h\to 0}{\mathop{\lim }}{{(2+h)}^{2}}=4 $

Also, $ f(2)={{(2)}^{2}}=4 $

Since, L.H.L = R.H.L. = f(2)

$ \therefore $ f(x) is continuous at 2.

Now, we check for differentiability

L.H.D at x = 2 R.H.D at x = 2

$ f’(x)=3x-2 $

$ f’(x)=x^{2} $ .

$ f’(x)=3 $

$ f’(x)=2x $

$ f’(x)| _{x=2} .=3 $

$ f’(x)| _{x=2} .=4 $

Since L.H.D $ \ne $ R.H.D

$ \therefore f(x) $ is not derivable at $ x=2 $