Limits Continuity And Differentiability Question 52

Question: If $ f’’(x)=-f(x) $ and $ g(x)=f’(x) $ and $ F(x)={{( f( \frac{x}{2} ) )}^{2}}+{{( g( \frac{x}{2} ) )}^{2}} $ and given that $ F(5)=5 $ , then F (10) is equal to-

Options:

A) 5

B) 10

C) 0

D) 15

Show Answer

Answer:

Correct Answer: A

Solution:

$ F’(x)=[ f( \frac{x}{2} ).f’( \frac{x}{2} )+g( \frac{x}{2} )g’( \frac{x}{2} ) ] $

Here, $ g(x)=f’(x) $ and $ g’(x)=f’’(x)=-f(x) $

so $ F’(x)=f( \frac{x}{2} )g( \frac{x}{2} )-f( \frac{x}{2} )g( \frac{x}{2} )=0 $

$ \Rightarrow F(x) $ is constant function so $ F(10)=5 $