Limits Continuity And Differentiability Question 59

Question: If the functions $ f(x) $ and $ g(x) $ are continuous in [a, b] and differentiable in (a, b), then the equation $ \begin {vmatrix} f(a) & f(b) \\ g(a) & g(b) \\ \end{vmatrix} =(b-a) $ $\begin {vmatrix} f(a) & f’(x) \\ g(a) & g’(x) \\ \end{vmatrix} $ has in the interval [a, b]

Options:

A) At least one root

B) Exactly one root

C) At most one root

D) No root

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ h(x)=| \begin{vmatrix} f(a) & f(x) \\ g(a) & g(x) \\ \end{vmatrix} =f(a)g(x)-g(a)f(x) $ Then, $ h’(x)=f(a)g’(x)-g(a)f’(x)=| \begin{vmatrix} f(a) & f’(x) \\ g(a) & g’(x) \\ \end{vmatrix} $

Since, $ f(x) $ and $ g(x) $ are continuous in $ [a,b] $ and differentiable in (a,

b), therefore h(x) is also continuous in [a, b] and differentiable in (a, b).

so, by mean value theorem, there exists at least one real number $ c,a<c<b $ for which $ h’(c)=\frac{h(b)-h(a)}{b-a}, $

$ \therefore h(b)-h(a)=(b-a)h’(c) $ .. (i) Here, $ h(a)=| \begin{vmatrix} f(a) & f(a) \\ g(a) & g(a) \\ \end{vmatrix} =0,h(b)=| \begin{vmatrix} f(a) & f(b) \\ g(a) & g(b) \\ \end{vmatrix} $

$ \therefore $ From Eq. (i), $ \begin{vmatrix} f(a) & f(b) \\ g(a) & g(b) \\ \end{vmatrix} =(b-a)h’(c) $

$ =(b-a)| \begin{vmatrix} f(a) & f’(c) \\ g(a) & g’(c) \\ \end{vmatrix} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें