Limits Continuity And Differentiability Question 61

Question: If $ u=f(x^{3}),v=g(x^{2}),f’(x)=\cos x $ and $ g’(x)=\sin x, $ then $ \frac{du}{dv}= $

Options:

A) $ \frac{1}{2}x\cos x^{3}\cos ecx^{2} $

B) $ \frac{3}{2}x\cos x^{3}\cos ecx^{2} $

C) $ \frac{1}{2}x\sec x^{3}\sin x^{2} $

D) $ \frac{3}{2}x\sec x^{3}\cos ecx^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Here, $ u=f(x^{3}) $

$ \Rightarrow \frac{du}{dx}=f’(x^{3}).\frac{d}{dx}(x^{3}) $

$ =(\cos (x^{3})).3x^{2}=3x^{2}.\cos x^{3} $ and $ v=g(x^{2}) $

$ \Rightarrow \frac{dv}{dx}=g’(x^{2}).\frac{d}{dx}(x^{2})=(\sin x^{2}).(2x) $

$ =2x\sin x^{2} $

$ \therefore \frac{du}{dv}=\frac{\frac{du}{dx}}{\frac{dv}{dx}}\frac{3x^{2}.\cos x^{2}}{2x.\sin x^{2}} $

$ \Rightarrow \frac{du}{dv}=\frac{3}{2}x.\cos x^{3}.\cos ecx^{2} $